集合论

总体把握

naive set theory(Cantor)=> 罗素悖论(Russell’s paradox) =>公理化集合论

朴素集合论(直觉上):康托儿创立

几个基本概念:

  1. 基数(势):可以理解为大小

  2. 一一对应:比较两个集合的大小时,如果两个集合能一一对应,那么这两 个集合基数相同或等势,均势

  3. 可数无穷大(可列无穷大):如果一个集合和自然数集一一对应,那么这 个集合就是可数,或者可列的,因为可以像数数(1 2 3 …)
    一样列出来,所以所有的非负偶数集都是可数的,而实数集是不 可数的(対角线法证明)

  4. 対角线法:对于(0,1)之间的实数,先假设所有的实数都列出来了,那 么构造一个实数使它与上面的每一个数都不同就能推出矛盾,
    够造的方法是使対角线上的数位不同。

    假设 (0, 1) 之间的实数与自然数是一一对应,且对应函数为 r, 那么可以将这些 数列出来:

    r(1): . 1 4 1 5 9 2 6 5 3 …
    r(2): . 3 3 3 3 3 3 3 3 3 …
    r(3): . 7 1 8 2 8 1 8 2 8 …
    r(4): . 4 1 4 2 1 3 5 6 2 …
    r(5): . 5 0 0 0 0 0 0 0 0 …
       …

    那么对角线上的数字为 1,3,8,2,0… 那么我现在把对角线上的数字都加1(如果是 9, 那么加1后结果取0)后构造一个实数,
    这个实数 d 就是 0.24931…, 那么这 个实数有下列性质:

    d 的第一位不同于 r(1) 的第一位
    d 的第二位不同于 r(2) 的第二位
    d 的第三位不同于 r(3) 的第三位
    d 的第四位不同于 r(4) 的第四位
    d 的第五位不同于 r(5) 的第五位

    也就是说 d 不在 r 映射中, 因此(0,1)中的实数和自然数就不是一一对应.

朴素集合论的问题:按照朴素集合论的观点,只要能够给出一个确切的条件P(x),那么 就能定义一个集合(any collection definable is a set) {x|P(x)},但是事实上这是不成立的,罗素悖论就是一个例子,公理化集合论的好处通过一系列的公理可以推出哪些集合存在,哪些集合不存在,这样就可以避开那些悖论

罗素悖论(理发师悖论)

通俗表述: 一个理发师声称给城里不刮胡子的人刮胡子,而且也只给这些不刮胡子的 人刮,那么理发师该不该给自己刮胡子。(any
collection definable is a set)

数学表述: P表示所有不包含自身的集合的集合(也就是所有不自吞的集合所组成的集合),那么P是否属于自己呢(也就是P是否自吞呢)。这是一个悖论,因为如果P属于P,那么P是自吞的,而根据P的性质,P只包含不自吞的集合,所以最后 $P \rightarrow \lnot P, \lnot P \rightarrow P$.
$$
\begin{equation}
P = {x| x \notin x }
\end{equation}
$$

公理化集合论

不定义什么是集合,而是通过这些公理来推导确定某些集合是存在的,某些集合是不存在 的,这些公理都是小心设计,所以避开了罗素悖论。

Extensionality Axiom(外延公理)

判断2个集合是否相等
$$
\begin{equation}
\forall A \forall B[\forall x(x \in A \iff x \in B) \Rightarrow A=B]
\end{equation}
$$

Empty Set Axiom(空集公理)

存在一个唯一的空集
$$
\begin{equation}
\exists B \forall x \ x \notin B
\end{equation}
$$
identical form:

Pairing Axiom(偶集公理)

For any set u and v, {u, v} is the pair set whose only members are u and
v.

Power Set Axiom(幂集公理)

对于任意集合A,存在一个集合B,恰好以A的一切子集为元素

some propertyies of Power set:

  1. $a \subseteq A \iff a \in \mathcal{P}A$

Union Axiom(并集公理)

a ∪ c is the set whose member belong to a or c

the axiom above is the preliminary form of Union axiom.

$\bigcup A = a1 \cup a2 \cup a3$ … (where A = {a1, a2, a3 …}) for
example: $\bigcup {a, b, c, d} = a \cup b \cup c \cup d$

extremely: $\bigcup \emptyset = \emptyset$

Subset Axioms(子集公理)

For each formula __ not containning B, the following is an axiom:

The reason why this axiom is called subset axiom is that whatever the
formula __ is, the set B is subset of c

Theorem: there is no set to which every set belongs

proof: if A is a set, we will construct a set not belonging to A

According to the subset axiom, if A is a set then B exists.and according
to the construction rule of B:

then if B ∈ A, we get $B \in B \iff B \notin B$, this is a
contradiction, so B ∉ A. (actually, beacause there is no set which
belongs to itself, so B = A).

  1. Intersection(交集)

    • $\bigcap$

      $\bigcap {a, b, c } = a \cap b \cap c$

  2. (relative complement)差集

    identical form:

Axiom of Choice

  1. first form

    For any relation R, there is a function $H \subseteq R$ with dom H
    = dom R.

Infinity Axiom

There exists an inductice set

Algebra of sets

Commutative laws

Associative laws

Distributive laws

De Morgan’s laws

Identities involving ∅

some properties

Relations and Functions

ordered pair

Definition: $<x, y>$ is defined to be {{x}, {x, y}}.

Theorem: $<x,y> = <u,v>$ iff x=u and y=v

Cartesian product(笛卡尔积): A × B = {<x,y> | x ∈ A and y ∈ B}

Lemma: if x ∈ C and y ∈ C then <x, y> ∈ $\mathcal{PP}C$

if x ∈ A and y ∈ B then <x, y> ∈ $\mathcal{PP}(A \cup B)$

Relation

Definition: A relation is a set of ordered pairs.

Definition: R is a relation, we define the domain of R(dom R),the
range of R(ran R) and the field of R(fld R) by:

  • x ∈ dom R $\iff$ ∃ y <x,y> ∈ R
  • y ∈ ran R $\iff$ ∃ x <x,y> ∈ R
  • fld R = dom R ∪ ran R

Lemma: If <x,y> ∈ A, then x and y belong to $\bigcup \bigcup A$

we say R is a relation on A, it means that R is a subset of (A × A)

n-ary relations

The N-ARY RELATIONS are defined similar to 3-ary and 4-ary relation.

Function

Definition: a function is relation F such that for each x in dom F,
there is only one y such that xFy.

partial function: if the function is X to Y, and some elements in X
are undefined, then it’s a partial function.

(total) function: if the function is X to Y and all elements in X
are defined, then it is a total function.

we say that F is a function from A into B or map A into
B(written: A ⟶ B), iff F is a function , dom F=A and ran F ⊆ B. if ran
F=B then we say F is a function from A onto B or map A onto B.

Definition: A relation R is single-rooted, iff for each y in ran R,
there is only one x such that xRy.

Definition:

Equivalence Relations

  1. R is reflexive on A, by which we mean that xRx for all x ∈ A
  2. R is symmetric on A, by which we mean that whenever xRy, then
    also yRx
  3. R is transitive on A, by which we mean that whenever xRy and
    yRz, then also xRz.

Definition: R is equivalence relation on A iff R is a binary
relation on A that is relexive on A, symmetric and
transitive.

if the relation R is symmetric and transitive, then R is flexive on (fld
R)

proof: since R is symmetric so if xRy then yRx and since R is also
transitive so xRx

Ordering Relation

顺序关系比如大于,小于(不包含小于等于, 大于等于).

Definition Let A be any set. A linear ordering on A (also called a
total ordering on A) is a binary relation R on A (ie
$R \subseteq A \times A$) meeting the following two conditions:

  1. R is a transitive relation; ie whenever xRy and yRz, then xRz.

  2. R satisfies trichotomy(三分法) on A, by which we mean that for any x
    and y in A exactly one of the three alterlatives:

    holds.

Natural Number

There are, in general, two ways of introducing new objects for
mathematical study: the axiomatic approch and the constructive
approch.

concepts and conventions

  1. ω : the set of natural number
  2. transitive set: A set A is said to be transitive set iff

Inductive Set

we construct natural number like this:

so the natural number has folllowing properties:

Definition: for any set A, its successor $a^+$ is defined by

then:

A set is said to be inductive iff $\emptyset \in A$ and it is “closed
under successor”. ie

Peano’s Postulates(皮亚诺公理)

皮亚诺公理是对自然数的公理化

Peano System

Peano System to be a triple $\langle N, S,e\rangle$ consisting of a
set N, a function $S:N \rightarrow N$, and a member $e \in N$ such
that the following three conditions are met:

  1. $e \notin ran\ S$
  2. S is one-to-one
  3. Any subset A of N that contains e and is closed under S equals N
    itself.

The condition $e \notin ran\ S$ rules out the loop in Fig 16a, and the
requirement that S be one-to-one rules out the system of Fig 16B.
Consequently any Peano system must look like Fig 16c.

Theorem: if σ is defined by:

$\langle \omega, \sigma, 0 \rangle$ is a Peano system

RECURSION ON ω

let A be a set, a ∈ A and $F: A \rightarrow A$. Then there exists a
unique function $h: \omega \rightarrow A$ such that

and for every n in ω,

Theorem Let $\langle N, S, e \rangle$ be a Peano system, Then
$\langle
\omega, \sigma, 0 \rangle$ is isomorphic to
$\langle N, S, e\rangle$, ie., there is a function h mapping ω
one-to-one onto N in a way that preserves that successor operation

and the zero element

Intuitively, this theorem implies that h(0)=e, h(1)=S(e), h(2)=S(S(e)),
h(3)=S(S(S(e))) …

Cardinal Number and Axiom of Choice

EQUINUMEROSITY

Definition: A set A is equinumerous to a set B(written
$A \approx B$) iff there is a one-to-one function from A onto B.

FINITE SET

Definition: A set is finite iff it is equinumerous to some
natural nunmber. Otherwise it is infinite.


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!